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Abstract. In this paper, we have considered two fully synchronous OBLOT
robots having no agreement on coordinates entering a finite unoriented grid through
a door vertex at a corner, one by one. There is a resource that can move around
the grid synchronously with the robots until it gets co-located along with at least
one robot. Assuming the robots can see and identify the resource, we consider
the problem where the robots must meet at the location of this dynamic resource
within finite rounds. We name this problem ”Rendezvous on a Known Dynamic
Point”.
Here, we have provided an algorithm for the two robots to gather at the location
of the dynamic resource. We have also provided a lower bound on time for this
problem and showed that with certain assumption on the waiting time of the re-
source on a single vertex, the algorithm provided is time optimal. We have also
shown that it is impossible to solve this problem if the scheduler considered is
semi-synchronous.

Keywords: Rendezvous · Finite Grid · Dynamic Resource.

1 Introduction

A swarm of robots is a collection of inexpensive and simple robots that can do a task
collaboratively by executing one single distributed algorithm. In recent days swarm
robot algorithm has become an exciting topic for research for several different reasons.
Firstly, from the economic perspective, it is in general cheaper than using powerful
robots. Moreover, a swarm of robots can be easily scaled based on the size of the en-
vironment they are deployed. Also, a swarm of robots is more robust against different
faults (eg. crash faults and byzantine faults). There are many other positive sides to
using a swarm of robots for executing a task. Thus, this topic has become quite rele-
vant in the field of research and application. The application of swarm robots is huge.
For example, it can be used for patrolling, different military operations, rescue opera-
tions, cleaning large surfaces, disaster management, network maintenance and there are
several others.

? The first three authors are full time research scholars in Jadavpur University.
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1.1 Background and Motivation

There are several tasks a swarm of robots can do like, arbitrary pattern formation ([1]),
gathering ([3]), network exploration ([16]), dispersion ([6]) and many more. Here, we
are interested in the problem of gathering. Gathering is a very classical problem where
a collection of robots deployed in an environment meets at a single point within a finite
time. This problem has been solved under different environments and different settings
([3,4,5,10,13,14,18]). Rendezvous is a special case of gathering where the number of
robots that need to gather is exactly two ([7,9,11,12,19]).

Since the deployed robots are simple it is hard for them to exchange important
information being far apart. So the main motivation for gathering is to meet at a single
point where the robots can exchange information for doing some task. Now let the
information is stored at a single point or a set of points in the environment. And the
robots need to be on those specific points to exchange information. In that case, the
robots must gather at one of those specific points for exchanging information.

Now, let there be one single point of resource in the environment and the resource
itself is a robot doing some other task in the same environment and thus, can move
freely until it meets with another robot. So, the question is can two robots gather at
the location of this moving resource? this is the question that has been the motivation
behind this paper. Now, it is quite obvious that the environment should be a bounded
region otherwise it would be impossible to do. Also for a bounded region in a plane,
finite point robots can’t meet at the location of the resource as there are infinitely many
empty points where the resource can move to avoid the meeting. Thus it is natural
to consider this problem for a bounded network. For that reason, we have considered a
finite grid as the environment in this work. Note that if two robots with weak multiplicity
detection can gather at the location of the resource, in some bounded networks, then any
number of robots can gather. This is because after two robots meet with the resource, the
resource becomes still and the other robots simply move to the location of the resource.
That is why we have considered this problem with two robots only, rather than using
any number of robots.

1.2 Earlier Works

In this paper, we are focusing on the problem of rendezvous on a known dynamic ver-
tex. Rendezvous is a special case of gathering involving two robots. Gathering has been
studied under different environments and different models throughout the span of re-
search on swarm robot algorithms. In [3], authors have shown that gathering on a plane
is possible for fully synchronous OBLOT robots but in [18] it has been proved that for
semi-synchronous and asynchronous OBLOT robots it is impossible to gather without
any axis agreement and multiplicity detection capabilities. So considering multiplicity
detection only a solution has been provided in [2] under the asynchronous scheduler.
Gathering has been studied under different networks also ([4,5,13,14]). In [14] Klasing
et al. first proposed the problem on a ring and proved that gathering on a ring is impos-
sible without the robots having multiplicity detection capabilities. In [4], the authors
examined the problem on the grid and trees and they found out that gathering is im-
possible even with global multiplicity detection if the configuration is periodic or sym-
metric and the line of symmetry is passing through any of the grid lines. Considering
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limitations in the view of robots many works have been done recently in [8,10,15,17].
Among these, the work in [17] and [10] considered infinite rectangular and triangular
grids respectively.

Now Rendezvous is a special case of gathering which has been studied extensively
in [7,9,11,12,19]. In [19], Suzuki et al. have shown that twoOBLOT robots can’t gather
in a semi-synchronous setting if the robots do not have any agreement on their local co-
ordinate system even with multiplicity detection. So in [7,9,11] authors have solved the
problem considering robots with O(1) memory or O(1) bits of message communication
under an asynchronous scheduler.

1.3 Our Contribution

Till now all work in gathering considered the meeting point to be not known from
earlier. contrary to that, in this work we have assumed, two fully synchronous robots
entering a finite unoriented grid through a door at a corner of the grid, know the meeting
point (i.e., can see and identify the resource). But the problem is, the meeting point (i.e
the location of the resource) can also move to an adjacent vertex along with the robots
in a particular round.

Assuming the robots to be OBLOT with the capability of global weak multiplicity
detection we have provided a distributed algorithm that solves the rendezvous problem
on a known dynamic meeting point within O(T f ×(m+n)) rounds, where T f is the upper
bound of the number of consecutive rounds the meeting point i.e., the resource can stay
at a single vertex alone and m× n is the dimension of the grid. We have also shown that
for solving rendezvous on a known dynamic point on a finite grid of dimension m × n
at least Ω(m + n) epochs is necessary. Hence, if we assume that the maximum number
of consecutive rounds, the location of the resource can stay the same is O(1) then, the
algorithm provided in this paper is time optimal. We have also proved that solving
rendezvous on a known dynamic point on a finite grid is impossible if the scheduler
considered is semi-synchronous. This justifies why a fully synchronous scheduler has
been considered in this work.

1.4 Organization of the Paper

In section 2, we have defined the problem formally and discussed the models of the
robot, resource, and scheduler in detail. We also have some definitions and notations in
this section which will be needed for the contents in Section 4. In Section 3, we have
discussed the lower bound of time required to solve this problem and also proved an
impossibility result about solving this problem under semi synchronous scheduler. In
Section 4, we have described each phase of the algorithm with the correctness results
mentioned in different theorems and lemmas. Finally, in Section 5, we conclude the
paper with some future possibilities and pathways for this research to continue.
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2 Problem Definition and Model

2.1 Problem Definition

Let G be a finite rectangular grid of dimension m × n. Suppose there is a doorway in a
corner of the grid through which two synchronous robots r1 and r2 can enter the grid.
Consider a movable resource that is placed arbitrarily on a vertex of G. Both robots can
see the resource. The resource will become fixed if at least one of r1 or r2 is on the same
vertex with the resource. Now the problem is to design a distributed algorithm such that
after finite execution of which both the robots gather at the vertex of the resource.

2.2 Model

Let G = (V, E) be a finite unoriented grid. A corner vertex is a vertex of degree two.
G has exactly one corner vertex that has a door called door vertex. Robots can enter
the grid by entering through that door. There is a movable resource, initially placed
arbitrarily at a vertex g0 (g0 is not the door) of G.

Robot Model: The robots are considered to be

� Autonomous: There is no centralized control.
� Anonymous: The robots do not have any unique identifiers for distinction.
� Homogeneous: All robots run the same distributed algorithm.
� identical: The robots are physically indistinguishable.

Also, the robots are considered to be point OBLOT robots (i.e., robots with no persis-
tent memory). The robots can enter through the door one by one. A robot can distinguish
if a vertex is on the boundary or a corner of the grid. Also, a robot can identify the door
from any other vertex. A robot can distinguish the resource from other robots. Each
robot has its local coordinate system but they do not agree on any global coordinate
system.

The robots operate in a LOOK-COMPUTE-MOVE (LCM) cycle. In each of the
cycles, a robot that was previously idle wakes and does the following phases,

LOOK: In LOOK phase a robot takes a snapshot of its surroundings and gets the
location of other robots and the resource according to its local coordinate system.

COMPUTE: In this phase a robot performs an algorithm with the locations of re-
source and other robots as input and as an output of that algorithm it gets the location
of a neighboring vertex called the destination point.

MOVE: In MOVE phase a robot moves to the destination point through the edge of
G joining its current location and destination vertex. It is assumed that no two robots
can cross each other through one edge without collision.

After completion of MOVE phase, the robot becomes idle until it is activated again.
The activation of the robots is controlled by an entity called a scheduler. In the

literature, there are mainly three types of schedulers. In the following, we discuss all
the scheduler models and the scheduler we have chosen among them for solving this
problem.
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Scheduler Model: There are mainly three types of schedulers that have been consid-
ered throughout the literature of swarm robotics. The models are as follows:

Fully Synchronous Scheduler (FSYNC)

_ Time is divided into rounds of equal lengths
_ At the beginning of each round all robots are activated.
_ In a particular round all activated robots perform the LOOK, COMPUTE and MOVE

phases together.

Semi Synchronous Scheduler (SSYNC)

_ Time is divided into rounds of equal lengths
_ At the beginning of each round a subset of robots are activated.
_ In a particular round all activated robots perform the LOOK, COMPUTE and MOVE

phases together.

Asynchronous Scheduler (ASYNC)

_ There is no sense of rounds.
_ A robot can either be idle or in any of the LOOK, COMPUTE, or MOVE phases

while some other robots are activated.

In this work, we have shown that it is impossible to solve the problem of rendezvous
on a known dynamic point if the scheduler is semi-synchronous. Hence considering a
fully synchronous scheduler we have provided an algorithm Dynamic Rendezvous that
solves the problem within finite rounds.

Resource Model: The resource res is a movable entity, initially which is placed arbi-
trarily on a vertex (except the door) of G. The resource moves synchronously along with
the robots. let the position of res at round i is denoted as gi (g0 is the initial location). for
some round i, gi and gi+1 are at most 1-hop away. The movement of the resource res is
controlled by an adversary. So gi+1 can be any neighbor of gi. We assume that resource
will stay fixed if it meets with at least a robot among r1 and r2. Otherwise, it can not
stay fixed on a vertex forever. Let T f be the upper bound of the number of rounds that
res can stay fixed alone on a vertex of G. Also, it is assumed that the resource can not
cross a robot on an edge without collision.

2.3 Notation and Definitions

For a robot r we denote the resource as res and the other robot as r′. Now we have the
following definitions.

Definition 1 (Door boundary of a robot). If a robot r is located on a boundary of
the grid on which the door vertex is also located then that boundary is called the door
boundary of the robot r and is denoted as BD(r).

Definition 2 (Perpendicular Line of robot r). For a robot r on a boundary, the straight
line perpendicular to BD(r) passing through r is called the perpendicular line of robot
r. It is denoted as PD(r).
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Definition 3 (Distance from resource along BD(r)). Distance of the resource res
along boundary BD(r) is defined as the hop distance of robot r from the vertex v on
BD(r) such that the line joining v and res is perpendicular to BD(r). We denote this
distance as dist(r) for a robot r on BD(r).

Definition 4 (InitGather Configuartion). A configuration C is called a InitGather
Configuartion if:

1. there is a robot r such that r and the resource res are on a grid line (say L).
2. the perpendicular distance of the other robot r′ to the line passing through res and

perpendicular to L is at most one.

In the following Fig. 1 and Fig. 2 we have mentioned the entities we have defined above.

Fig. 1: Diagram of a configuration men-
tioning BD(r), BD(r′), PD(r), PD(r′) and
dist(r′).

Fig. 2: Diagram of an InitGather Config-
uration

3 Lower Bound of Time and Impossibility

In this section, we will discuss the lower bound of time required to solve the problem
of rendezvous on a known dynamic point on a finite grid of dimension m × n. Also,
we will prove an impossibility result which will justify our assumption of considering
a fully synchronous scheduler to solve this problem. But first, let us define “epoch”.
An epoch is a time interval within which each robot in the system has been activated
at least once. In the case of a fully synchronous scheduler, an epoch is equivalent to
a round but for other schedulers, an epoch interval is finite but unpredictable. Now in
the following theorem, we will discuss the time lower bound of solving rendezvous at
a known dynamic point on a finite grid.

Theorem 1. Any algorithm that solves rendezvous at a known dynamic point on a finite
grid of dimension m × n takes Ω(m + n) epochs in the worst case.
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Proof. Let us consider the scheduler to be a fully synchronous scheduler. Thus an epoch
is equivalent to a round. Consider the following diagram (Fig. 3) where after each T f

consecutive rounds, the resource changes its location from either P to Q or Q to P. This
implies after entering from the door vertex the robots must meet the resource either in
vertex P or in vertex Q. Now from the door vertex, the shortest path to P or Q is of
length m + n − 1. So to meet at either P or Q with the resource, each robot must travel
through a path of length at least m + n− 1. Now since in a round a robot can only move
a path of length one, to travel a path of length m + n − 1 at least m + n − 1 round i.e
epoch is necessary to solve this problem. Hence the result. ut

Fig. 3: from the door vertex to reach P or Q the robot r needs to travel at least a path of
length m + n − 1.

Now we will discuss the impossibility result in the next theorem.

Theorem 2. No algorithm can solve the problem of rendezvous on a known dynamic
point on a finite grid of dimension m × n if the scheduler is semi-synchronous.

Proof. Let there is an algorithm A such that after finite execution of which two robots
on a finite grid of dimension m × n meet at the location of the dynamic resource. Let
m, n > 2. Also, let t be the round such that after completion of which at least one robot
reaches the location of the resource and terminates.

Let no robot is adjacent to the resource at the beginning of round t. This implies at
the beginning of round t, the resource has at least two empty neighbor vertices. Now
let the adversary activates only one robot during this round. Thus, even if the activated
robot moves to one of the resource’s empty adjacent vertex, another empty vertex re-
mains empty. So even if the resource has to move during round t it can always find
an empty vertex to move that remains empty after the completion of the round. Hence
after completion of round t, no robot can move to the location of the resource. Thus we
reach a contradiction. Now, let exactly one robot is adjacent to the resource res at the
beginning of round t. Then, at least res has one empty vertex which is not reachable by
the adjacent robot in one round. So, if the adversary activates only the adjacent robot,
say r, and res moves to the empty vertex not reachable by r then again we reach a
contradiction. Hence both the robots must be adjacent to the resource at the beginning
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of round t. Now if the resource is not at the corner and both the robots are adjacent to
the resource at the beginning of round t then, the resource must have an empty adjacent
vertex that is not reachable by the robots in one round. Thus if the resource moves to
that vertex during round t, we again reach a contradiction.

Now if we can prove that the configuration (say, Ccorner) where the resource is at a
corner and both the robots are adjacent to it, is never formed then we are done. Let the
adversary always activates only one robot in a particular round. Now, if possible let at
the beginning of round t, the configuration is Ccorner. This implies the configuration, say,
Ccorner−1, that was formed just before Ccorner must be one of C1, C2, C3 or C4 (Fig.4).
Since adversary is compelled to activate only one robot in a particular round, so in
configuration Ccorner−1 one the robot must be adjacent to the corner vertex. Without loss
of generality let r′ be that robot. Note that, in C1 and C2 res did not move to form
Ccorner and, in C3 and C4 res had to move to form Ccorner. Note that in all of these
configurations, there is only one robot that is adjacent to the resource. If the adversary
activates the adjacent robot then, in all of these configurations the resource can find an
empty adjacent vertex that is not a corner and remains empty even after the move of
the resource. Thus from any of the four configurations C1, C2, C3 and C4, Ccorner is not
formed. Hence we arrive at a contradiction. Thus Ccorner will never be formed and hence
the result. ut

Configuration C1 Configuration C2

Configuration C3 Configuration C4

Fig. 4: Some examples of configuration Ccorner−1.

This justifies the necessity of a fully synchronous scheduler to solve this problem. In
the next section assuming a fully synchronous scheduler, we have provided an algorithm
that solves this problem of rendezvous on a known dynamic point on a finite grid.
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4 Algorithm

It is quite obvious to observe that without the help of the other robot, a robot can not
independently reach the location of the resource if the resource is controlled by an ad-
versary. So to solve this problem the two robots must work together collaboratively and
push the resource toward a corner. Now since there is no agreement on the coordinates
of the robots and the robots are oblivious, the main challenge here is to agree on the
direction for the robots to move.

The rendezvous algorithm Dynamic Rendezvous, proposed in this section is exe-
cuted in three phases. Entry Phase, Boundary Phase and Gather Phase. In the first two
phases, the agreement on the direction of movement for the robots is constructed from
the fact that the robots know the location of the resource, door vertex, and the bound-
aries of the grid and they always remain on the same boundary during these two phases.
In the Gather Phase though, the robots move inside the grid leaving its boundary. In this
situation as the robots are not on boundaries, they can not decide on a specific boundary
for agreement. In this scenario, the agreement on the direction comes from the fact that
according to the algorithm, at least one robot must be on a line along with the resource
during each round of this phase. The algorithm Dynamic Rendezvous is as follows.

Algorithm 1: Dynamic Rendezvous

1 if a robot is on the door vertex then
2 begin Entry Phase;
3 else if The configuration is not an InitGather Configuration then
4 begin Boundary Phase;
5 else
6 begin Gather Phase;

The three phases are described in more detail in the following subsections.

4.1 Entry Phase

The first phase is called the Entry Phase. During the Entry Phase, both the robots enter
through the door vertex one by one into the grid G. A robot on the door vertex first
checks if it can see another robot already on the grid. If it does not find any other robot
on the grid, it moves through any of the two edges that are incident on the door vertex.
On the other hand, if there is already a robot on an adjacent vertex of the door vertex,
the robot on the door vertex moves through the other edge which is not incident on the
adjacent vertex where it saw another robot. A robot on the adjacent vertex of the door
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vertex does not move until it sees another robot on the other adjacent vertex of the door
vertex.

Algorithm 2: Entry Phase for robot r

1 if r is on the door vertex then
2 if no other robot on boundary then
3 move through any edge on the boundary;
4 else
5 move through the edge on the boundary where there is no other robot;

The Entry Phase ends when both robots are at the two distinct adjacent vertices of
the door vertex. After the Entry Phase the robots will check if the configuration is a
InitGather Configuartion or not. If the configuration is not an InitGather Configuar-
tion then the robots execute the Boundary Phase otherwise they execute the Gather
Phase

4.2 Boundary Phase

The Boundary Phase starts after the end of the Entry Phase. In this configuration, both
the robots are at the boundary and on the two distinct adjacent vertices of the door
vertex initially. If a robot r sees that, the distance from the resource res for the robots r
and r′ along BD(r) and BD(r′) respectively both are non zero then r finds out the vertex
v among its two adjacent vertices for which the distance of res along BD(r) decreases
for the current view. If v is not the door, r moves to that vertex v.

On the other hand if r sees that, the distance of the resource for the other robot r′

along BD(r′) is zero and its distance from res along BD(r) is strictly greater than one
then it moves along BD(r) towards the resource res. Note that for this case a robot
never moves to the door vertex as if r moves to the door vertex by executing this case
during some round t then, res must be on BD(r′) at the beginning of round t. Also at
the beginning of round t, r must be one hop away from the door vertex. This implies
dist(r) = 1. This leads to contradiction as this case is only executed by r when dist(r) >
1.

Definition 5 (Quadrants). The grid G is divided into four quadrants by the two lines
PD(r) and PD(r′). The quadrants on the northeast, northwest, southeast, and southwest
are denoted as RNE ,RNW ,RS E and RS W respectively (Fig. 5).

At the beginning of the Boundary Phase, quadrant RNW is a 2×2 grid, RS W is a (m−1)×2
grid, RNE is a 2 × (n − 1) grid and RS E is a (m − 1) × (n − 1) grid. At the beginning of
Boundary Phase, the resource res must be either inside or on one of RNE ,RS W and RS E .
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Fig. 5: Four quadrants divided by PD(r) and PD(r′)

Algorithm 3: Boundary Phase for robot r

1 if on the same vertex with res then
2 terminate;
3 else
4 if r′ is on the same vertex with res then
5 move to res along any shortest path avoiding door;
6 else
7 if dist(r) , 0 and dist(r′) , 0 then
8 v← adjacent vertex on BD(r) which is near res along the

boundary.;
9 if v is not the door vertex then

10 move to v;

11 else
12 ‘ if dist(r′) = 0 and dist(r) > 1 then
13 Move along boundary towards res;

Theorem 3. For a grid of dimension m × n, the Boundary Phase terminates within
O(max{m − 1, n − 1}) rounds.

Proof. If possible let us assume that Boundary Phase never terminates. This implies,
no robot ever reaches the resource res and InitGather Configuration is never achieved.
Now we claim the following:

Claim (1). Within O(max{m − 1, n − 1}) rounds, the resource must cross at least once
or move on to any one of PD(r) or PD(r′).

Let us first assume that if possible our claim is false, i.e., the resource res never moves
onto and never crosses PD(r) and PD(r′). So res can never be on PD(r) or on PD(r′) at
the beginning of Boundary Phase. Now there are three cases depending on the location
of res at the beginning of the Boundary Phase.
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Case 1: Let us assume that res is inside RS E . Also, observe that res can never get
out of RS E as otherwise, it has to move onto or cross any one of PD(r) or PD(r′). so
dist(r), dist(r′) ≥ 1 in every rounds. So according to the algorithm both r and r′ move
along BD(r) and BD(r′) respectively towards the direction of res. So, in each round the
height and width of the quadrant RS E decreases by one unit. Now since initially the RS E

was of dimension (m − 1 × (n − 1) so within O(max{m − 1, n − 1}), the resource must
move onto or crosses either PD(r) or PD(r′). A contradiction.

Case 2: Let us assumes res is inside RNE at the beginning f Boundary Phase, i.e.,
According to Fig 5, res is on the line segment of BD(r′) but on the right side of r′. Now
observe that in this case though for both the robots dist(r) and dist(r′) ≥ 1, r never
moves as otherwise, it has to move to the door vertex. So res can never move below
BD(r′) otherwise it would move onto PD(r) and we will reach a contradiction. So, even
if the res moves it must move on the line segment of BD(r′) which is on the right side of
r′. Also since r′ never reaches the resource res, dist(r′) ≥ 1, always in each round. So r′

also moves in each round along BD(r′) towards r′. Hence the length of the line segment
of BD(r′) which is on the right of r′ decreases in each round. Initially, at the beginning
of Boundary Phase, the length of that line segment was n − 1 unit. So within n − 1
rounds res either move onto PD(r) or move into r′. Again we reach a contradiction.

Case 3: Let the resource be inside RS W at the beginning of Boundary Phase. This
case is similar to case 2. and we will again reach a contradiction. So our assumption
was wrong. Hence Claim (1).

So, if res does not move into any one of r or r′ and the configuration does not
becomes an InitGather Configuration then res must move onto or crosses any one of
PD(r) and PD(r′) within max{m − 1, n − 1} rounds in the worst case. Now we again
claim the following:

Claim (2). If the res has moved onto or crosses PD(R) (R ∈ {r, r′}) at some round (say
t), then dist(R) ≤ 1 from round t on wards.

Without loss of generality let res have crossed or moved onto PD(r) at round t. So at
the beginning of round t + 1, dist(r), must be less or equal to one.

Case 1: Let res be on PD(r) at the beginning of round t + 1. Then dist(r) = 0.
Now during round t + 1, res either moves parallel to PD(r) (horizontally in Fig. 5) or,
Perpendicular to PD(r) (vertically in Fig. 5) or does not move at all. Now if res moves
parallel to PD(r) or does not move at all, then dist(r) remains the same after completion
of round t + 1 according to the algorithm of Boundary Phase. On the other hand, If res
moves Perpendicular to PD(r) during round t + 1, then dist(r) becomes one after the
completion of round t + 1.

Case 2: Let res crosses PD(r) at round t. Then at the beginning of the round t + 1,
dist(r) = 1. Now if res moves parallel to PD(r) or does not move at all during round
t + 1 then after the completion of the round dist(r) either stays one or decreases to zero.
Now let res moves Perpendicular to PD(r) during round t+1, then if res moves towards
PD(r) then dist(r) either remains same as one (as r also moves towards res along BD(r))
or becomes zero in case r does not move along BD(r). On the other hand, if res moves
away from PD(r) during round t +1, then dist(r) remains one after completion of round
t + 1 as r also moves during round t + 1 towards the direction of res along BD(r).
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So after completion of round t + 1, dist(r) is still less or equal to 1. Now with
similar arguments, it is easy to see that if after completion of round t + i, dist(r) ≤ 1,
then dist(r) ≤ 1 after completion of round t + i + 1 for some natural number i. Hence
We can conclude Claim (2). Now we claim another statement below.

Claim (3). If res has moved onto or crossed PD(R) where R ∈ {r, r′} at some round t,
then res never crosses PD(R′) at round t on wards (Here R′ = r if R = r′ and R′ = r′ if
R = r).

Fig. 6: When res moves onto PD(r′) even after crossing or moving onto PD(r) in an
earlier round.

Without loss of generality let res move onto or crosses PD(r) at some round t and
BD(r′) is the boundary of G at the north (Fig. 5). We have to show that from round
t onwards res never crosses or moves onto PD(r′). If possible let res move onto or
crosses PD(r′) at some round t′ > t. If res moves onto PD(r′) at round t′ then after
completion of round t′, r′ and res are on a line L = PD(r′) and dist(r) ≤ 1 (from
claim (2)) (Fig. 6). i.e., Perpendicular distance of r to the line passing through res and
perpendicular to BD(r) is at most one.Now, since BD(r) and PD(r′) = L are parallel
after completion of round t′, the configuration becomes an InitGather Configuration
which is a contradiction. So, let us assume that at round t′ > t, res has crossed PD(r′).
So at the beginning of the round t′, res must be on RNE ∪ RS E .

Case 1: Let res was on PD(r) at the beginning of round t′ and res crosses PD(r′)
during the round t′. This implies, dist(r′) ≤ 1 and res are on PD(r) at the beginning of
round t′. Let PD(r) = L (Fig. 7). Also, the line passing through res and perpendicular
to L is parallel to PD(r′). So dist(r′) = perpendicular distance of r′ to the line pass-
ing through res and perpendicular to L ≤ 1. Hence, at the beginning of round t′ the
configuration is an InitGather Configuration. Hence a contradiction.

Case 2: Let res was in RS E and not on PD(r) at the beginning of round t′ and it
crosses PD(r′) during this round. Note that in this case res moves parallel to PD(r)
(according to Fig. 8, horizontally). Also, r moves along BD(r) opposite of the door.
Since initially at the beginning of round t′, dist(r) = 1 (by claim (2) and res is not
on PD(r)), after completion of the round dist(r) becomes zero i.e., res moves on to
PD(r) (Fig. 8). Now since during this round res also crosses PD(r′), dist(r′) becomes
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Fig. 7: When res is on PD(r) at the beginning of round t′ and at a distance 1 unit from
PD(r′) then configuration is an InitGather Configuration.

Fig. 8: res is on RS E and not on PD(r) or PD(r′) at the beginning of round t′. res crosses
PD(r′) during round t′. the red arrows denote the moves of the robots and the resource
during round t′.

one. Now considering PD(r) = L it is easy to see that after completion of round t, the
configuration becomes an InitGather Configuration. Which is again a contradiction.

Case 3: Let res is in RNE and not on PD(r) at the beginning of round t′ and it
crosses PD(r′) during this round. Let at the beginning of round t′ dimension of RNE is
m′ × n′ where n′ ≥ 2 (as a robot never moves to the door vertex during the Boundary
Phase). If n′ > 2 (i.e., destination vertex of r is not the door vertex) then observe that
during the round t′, res moves parallel to PD(r) (horizontally according to Fig. 9) and
r moves along BD(r) towards res. Now as dist(r) = 1 (by claim (2) and the fact that
res is not on PD(r)) at the beginning of round t′, after completion of the round, res
moves onto PD(r). Also, dist(r′) becomes one after completion of round t′ as res just
crosses PD(r′) during this round (Fig. 9). So considering PD(r) = L it is easy to see that
after completion of round t′, the configuration becomes an InitGather Configuration,
a contradiction. So let us consider n′ = 2. In this case, res must be on BD(r′) and
dist(r′) = 1 at the beginning of round t′ i.e., res is on the vertex which is on BD(r′)
and adjacent to the vertex of r′ at the beginning of round t′ (Fig. 10). Now since we are
assuming res crosses PD(r′) during the round t′, that means res must have crossed r′

during round t′ along BD(r′) but that is a contradiction as it would cause a collision of
res and r′.
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Fig. 9: res is on RNE where height of
RNE is more than 2, but not on PD(r)
or, PD(r′), at the beginning of round t′.
The red arrows denote the moves of the
robots and the resource during round t′.

Fig. 10: When RNE has height 2 at the
beginning of round t′. Note that res
must be on BD(r′) and can not cross
PD(r′) without colliding with r′. The
red arrows denote the moves during
round t′.

In all of these above cases, we arrive at contradictions. Hence our assumption was
wrong. So if res crosses or moves onto PD(R) for some R ∈ {r, r′} at some round t then
it never crosses or moves onto PD(R′) in the rounds onwards where R′ = r if R = r′

and R′ = r′ if R = r.
From the above three claims we conclude that res must crosses or moves onto

PD(R) where R ∈ {r, r′} at some round t within O(max{m − 1, n − 1}) rounds and
dist(R) ≤ 1 from round t on wards. Also we have shown that res never crosses PD(R′)
again where R′ = r if R = r′ and R′ = r′ if R = r from round t on wards.

Now without loss of generality let, res has moved onto or crossed PD(r) at some
round t where BD(r′) is the boundary on the north of the grid (Fig. 5). Then from round
t on wards res must lie inside (RNE ∪ RS E) \ PD(r′) i.e., dist(r′) ≥ 1 from round t on
wards. So, r′ must move away from the door along BD(r′) in each round from round t
onwards. Let after completion of round t the dimension of (RNE ∪RS E) is m′×n′, where
the length n′ < n. Note that after n′ rounds (RNE ∪ RS E) \ PD(r′) = φ as length of the
rectangle (RNE∪RS E) decreases in each round due to the move of r′. So, res can not stay
inside (RNE∪RS E)\PD(r′) for all rounds after the round t. We arrive at this contradictory
conclusion because our primary assumption about the termination of Boundary Phase
was wrong. So Boundary Phase must terminates within O(max{m − 1, n − 1}) rounds,
and hence the Theorem ut

4.3 Gather Phase

Gather Phase starts if none of the two robots reaches the location of res after the termi-
nation of the Boundary Phase. Throughout the execution of this phase, the configuration
will remain an InitGather Configuration (Lemma 1). So, in each round, a robot will
lie on the same line (say L) along with res, and the perpendicular distance of the other
robot to the line passing through res and perpendicular to L must be at most one. During
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this phase, if a robot is in the same location with res, it terminates and the other robot
moves to the location of res along any shortest path. On the other hand when none of
the robots are on the same vertex with res, the robot on L checks if res is adjacent to it.
If res is not on its adjacent vertex, it moves towards res along L. Otherwise, if res is on
its adjacent vertex then it only moves towards res along L if it sees res is on a corner
and the other robot is also on another adjacent vertex of res. Now if the robot is not on
any line along with the resource res, that implies its perpendicular distance to the line
through res and perpendicular to L is one. In this case, the robot will move parallel to
L towards res.

Algorithm 4: Gather Phase for robot r

1 if r is on same vertex with res then
2 terminate;
3 else
4 if r′ is on the same vertex with res then
5 move to res along any shortest path avoiding door vertex;
6 else
7 if r is on a line L with res then
8 if res is not adjacent to r then
9 move towards res along L;

10 else
11 if res is at a corner and r′ is adjacent to res then
12 move towards res along L;

13 else
14 move parallel to L towards res;

Now we prove the following lemma that proves our claim in the description of this
phase that during the Execution of Gather Phase the configuration at the beginning of
any round is an InitGather Configuration.

Lemma 1. Let at the beginning of some round t the configuration is an InitGather
Configuration, then at the beginning of round t + 1 the configuration will again be an
InitGather Configuration

Proof. Let at the beginning of some round t, the configuration is an InitGather Con-
figuration. This implies there is a robot say r, which is on line with the resource res on
the grid G. Let us call this line L. Also the perpendicular distance of the other robots r′

is at most one to the line passing through res and perpendicular to the line L. Observe
that during the round t, res can either move parallel to L or perpendicular to L or does
not move at all.

Case 1: Let us consider the case where res is moving Parallel to L. In this case since
r moves along L or if does not move at all, it would still be on the line along with res
after the completion of the round. Note that since res moves along L the perpendicular
to L and passing through res (say, L′) shifts along L. Now if the other robot (say r′) is
one unit apart from L′ at the beginning of round t then, r′ moves parallel to L towards
res i.e., towards L′ (Fig. 11), the perpendicular distance of r′ to L′ still remains one
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after completion of the round. So at the beginning of the round t + 1, the configuration
again is an InitGather Configuration. Now if at the beginning of round t, r′ is on L′

then, r′ moves along L′ towards res (Fig. 12). Now even if res moves along L, after
completion of round t, r′ is at most one unit apart from L′. So the configuration is still
an InitGather Configuration at the beginning of round t + 1.

Fig. 11: r′ is one unit apart from L′ and
res moves along L at the beginning of
round t. The red arrows are the direction
of movement of the robots and the re-
source.

Fig. 12: r′ is on L′ and res moves along
L at the beginning of round t. The red ar-
rows are the direction of movement of the
robots and the resource.

Case 2: Let us consider the case where res moves perpendicular to the line L during
the round t. Observe that here res moves along the line L′, the line perpendicular to L
and passing through res. So, the line does not shift during round t. Now, if r′ is one
unit apart from L′ then, it moves parallel to L towards res (i.e., towards L′). Thus, the
distance of r′ to L′ decreases to zero after the completion of the round (Fig. 13). Also, if
at the beginning of round t, r′ is on L′ then even if r′ moves it remains on L′ as res also
moves perpendicular to L i.e., along L′ during round t (Fig. 14). So after completion of
round t, r′ and res will be on same line i.e., L′ for both the cases of r′ being on L′ or not.
Also note that during round t, r remains on the line L irrespective of whether it moved
or not. Now, the line perpendicular to L′ and passing through res (say L′′) is parallel
to L and one unit apart from L. Thus after completion of round t, the perpendicular
distance of r to the line L′′ is one. Thus after completion of round t and hence at the
beginning of round t + 1, the configuration is still an InitGather Configuration.

Case 3: Now, let us consider the case where res does not move at all. In this case,
the robot r on the line L along with res stays on the same line L along with res, even if
it moves. This is because r moves along L according to the algorithm for Gather Phase.
Note that, the line L′ passing through res and perpendicular to L does not shift as res
is not moving. Also observe that the other robot, r′ moves parallel to L towards res
i.e., towards L′ if at the beginning of round t, r′ is one unit apart from L′ (Fig. 15) and
moves along L′ if it was already on L′ at the beginning of round t (Fig. 16). So, after
completion of the round t, the distance of r′ to L′ must be zero. Thus after completion of
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Fig. 13: Diagram of an InitGather Con-
figuration where res moves perpendicu-
lar to L and r′ is not on L′ at the beginning
of the round t. L′′ is the line parallel to L
on which res moves during round t.

Fig. 14: Diagram of an InitGather Con-
figuration where res moves perpendicu-
lar to L and r′ is on L′ at the beginning of
the round t. L′′ is the line parallel to L on
which res moves during round t.

round t, and so at the beginning of round t + 1, the configuration is again an InitGather
Configuration. Hence the proof. ut

Fig. 15: Diagram of an InitGather Con-
figuration where res does not move and
r′ is not on L′ at the beginning of the
round t.

Fig. 16: Diagram of an InitGather Con-
figuration where res does not move and
r′ is on L′ at the beginning of the round t.

Lemma 2. If none of the two robots have terminated and both of them are not adjacent
to res at a corner then, during the execution of Gather Phase, two robots never are on
the same line.

Proof. Let after completion of round t, the execution of Gather Phase has been started.
Note that at the beginning of round t + 1, the robots were in different boundaries of the
grid and hence they were not on the same line. If possible let t′ > t + 1 be the round
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where two robots move to be on the same line for the first time. Observe that at the
beginning of round t′, there is a robot (say, r) that must be on a line (say, L) along with
res. And according to the algorithm, r must stay on L after the completion of round t′.
Let I be the line perpendicular to L and passing through r after the completion of the
round.

Claim (4). We claim that the other robot r′ never moves to I during the round t′.

Let, r′ is not on L′, the line passing through res and perpendicular to L. Thus r′ must
move parallel to L during round t′. Since r′ moves parallel to L and hence perpendicular
to I towards the direction of res, it moves to I only if res and r are on the same direction
of r′ along L. Now, observe that L′ must be between r′ and I at the beginning of round
t′ (Fig. 17). This implies that r′ moves onto I during round t′ only if both r′ and r move
onto L′ during round t′ (i.e., L′ = I after completion of the round). But observe that r
moves to L′ implies, r must be adjacent to res on line L at the beginning of round t′.
This implies r does not move (as res is not at the corner with r′ adjacent to res). Hence
we reach a contradiction and thus we can assure that to be on the same line r′ must
move onto L during round t′.

Now observe that if the distance of r′ to L′ is one then r′ must move parallel to L and
thus, never reaches L. So let the distance of r′ to L′ is zero at the beginning of round t′.
This implies r′ is also on the same line L′ along with res. Now, r′ moves on to L during
round t′. Thus at the beginning of round t′, r′ must be adjacent to res (Fig. 18). This
implies during round t′, r′ does not move at all (as res is not at a corner with both the
robots on two adjacent vertices). We arrive at a contradiction assuming the existence
of a round where both the robots will move on to the same line. Our assumption was
wrong and hence the lemma. ut

Fig. 17: r′ is not on L′ then r′ never moves
onto I during the round t′.

Fig. 18: r′ is on L′ then r′ never moves
onto L during the round t′.

Let at the beginning of a particular round during the Gather Phase take any robot
(say r) which is on the same line L along with the resource, res. Let us define two lines,
firstly, L1 passing through r and perpendicular to L, and secondly L2, passing through
the vertex of the other robot r′ and parallel to L. Note that the lines L1 and L2 divides
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the entire grid into one or more rectangles. The rectangle inside of which the resource
res is located is called the ”Containing Rectangle” and it is denoted as RCon (Fig. 19).
Observe that, at the beginning of the first round of Gather Phase, L1 is BD(r) and L2 is
BD(r′) and RCon = G.

Fig. 19: Diagram of RCon

Lemma 3. The resource res never moves onto L1 or L2 during the Gather Phase with-
out arriving at the same location with a robot.

Proof. Initially at the beginning of Gather Phase, resource res must not be on BD(r) or
BD(r′). Otherwise, res must have crossed or moved onto both PD(r) and PD(r′) during
the Boundary Phase, which is not possible due to claim (3). If possible let during a
particular round t, the resource res first moves on to any one of L1 or L2 for the first
time without arriving at the same location with a robot. Let res moves onto L1 after
completion of round t. So, the perpendicular distance of res to L1 is one at the beginning
of round t. Now, r is on the line L along with res at the beginning of round t. So, r is
adjacent to res at the beginning of round t. For moving onto L1, res must move along L
towards r, so after completion of the round t, res reaches the same vertex as r. Thus after
completion of round t, the location of r and res becomes the Same. So res never moves
onto L1. Now let res move onto L2 during round t. Let L′ be the line perpendicular
to L and passing through res. If the perpendicular distance of r′ to L′ is zero, i.e., r′

is also on line L′ along with res at the beginning of round t then, as the same logic
above we can show that res can not move onto L2 during round t. So let us assume
the perpendicular distance of r′ to the line L′ is one at the beginning of round t. In this
case, r′ moves along L2 towards the direction of res, and res moves along L′ towards L2
during round t. Now since we have assumed res moves onto L2 during round t, L2 must
be one distance away from res along L′. Also L′ is one distance away from r′ along L2
and r′ moves along L2 towards L′ (Fig. 20). So after completion of round t, both r′ and
res meet at the same vertex, which is a contradiction. Hence res never moves onto L1
or L2 during the Gather Phase without arriving at the same location with a robot. ut

Corollary 1. The resource res never moves outside RCon during the Gather Phasewith-
out arriving at the same location along with a robot.
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Fig. 20: Diagram of RCon

Proof. If res moves out of RCon then it must cross either L1 or L2 without moving onto
them.

Now the resource, res never crosses L1 without reaching the same vertex along with
r. Also, for the same reason, res never crosses L2 while r′ is also on the same line along
with res. So let us assume r′ is not on the same line along with res at the beginning of
some round t during which res crosses L2. Now if r′ is not on a line along with res then
it must move along L2 during round t. So, the line L2 does not shift after the completion
of round t. This implies res must move onto L2 to cross it which is not possible due to
Lemma 3. Hence res never moves out of RCon. ut

Let at the beginning of the first round of Gather Phase, RCon be a m1 × n1 grid. Let
the height and width of RCon be m1 and n1 where both m1 > 2 and n1 > 2. We will prove
that within T f + 1 rounds either both m1 and n1 decrease or one of m1 and n1 decreases
and the other one stays the same.

Lemma 4. If both height and width of the RCon be more than two during the Gather
Phase then, within T f + 1 rounds, if no robots are terminated either both height and
width of RCon decreases or one of height or width decreases and the other remains
same.

Proof. Let at the beginning of some round t during the Gather Phase, r be a robot
on the line L along with the resource, res. The lines L1 (line passing through r and
perpendicular to L)and L2 (line passing through the vertex of the other robot, r′ and
parallel to L) and the boundaries that do not contain the door vertex forms a rectangle
RCon. We have proved that res is contained within RCon and never moves out of it. Let
the dimension of RCon at the beginning of round t be m1 × n1 where both m1 and n1 are
greater than two. Thus if res is at the corner at the beginning of round t, both r and r′

are not adjacent to res. Thus during round t, no robot moves to the location of res.
Case 1: Now let at the beginning of round t, r is not adjacent to res. Also, let

without loss of generality number of vertices on side of RCon which is parallel to L at
the beginning of round t is the width of RCon. Now according to the algorithm, r moves
along L towards res i.e towards the direction of the interior of RCon. Hence L1 shifts
towards the interior of RCon. So the width of RCon decreases during round t. Now, if r′

is not on any line with res or adjacent to res on the line L′ (line perpendicular to L and
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passing through res) at the beginning of round t then, r′ moves along L2 (Fig. 21) or
does not move at all. In both of these cases, the height of RCon remains the same after
the completion of the round. on the other hand if at the beginning of round t, r′ is on
L′ along with res and not adjacent to r′ then, r′ moves along L′ towards the direction
of res (Fig. 22). Note that in this case L2 also shifts towards the interior of RCon and
decreases the height of RCon after completion of round t.

Fig. 21: Only width of RCon decreases and
height remains same.

Fig. 22: both height and width of RCon de-
creases.

So we have shown that if r, a robot on a line L with res is not adjacent to res then
either both height and width decrease or only width decreases in one round.

Case 2: Let, if res is adjacent to r on L at the beginning of round t then, r will not
move along L. It is assumed that res will not stay at the same location for more than
T f consecutive rounds. Note that since both height and width are more than two, res
gets an empty vertex to move. Now in the worst case during the round t + T f , res must
have moved either along L or along L′(line perpendicular to L and passing through res).
Note that res can not move towards r along L as it would end up at the same location
as r.

Case 2(a): Let during the round t + T f , res moves along L opposite to r then, at
the beginning of round t + T f + 1, r and res are not adjacent along L. Hence during
this round, either only the width of RCon decreases and height remains the same, or both
height and width of RCon decrease by a similar argument as case 1.

Case 2(b): Now let us consider the case where r is adjacent to res on L at the
beginning of round t + T f but res moves perpendicular to L i.e., along L′ during the
round t + T f .

If at the beginning of round t + T f , r′ was on L′ then, by the same argument as in
Case 1 and Case 2(a) we can conclude that in the worst case, after completion of round
t + T f + 1, the height of RCon must decrease while width either remains same or also
decreases.

Let us now consider r′ is not on L′ at the beginning of round t + T f . In this case,
after completion of round t + T f , r′ and res must be on the line L′ and hence according
to the same argument as above cases in the worst during round t + 2T f + 1 either height
and width of RCon both decrease or height decreases while the width remains same. ut
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Corollary 2. no robot moves to door vertex during Gather Phase.

Proof. Let at round t, Gather Phase is started. Note that at the beginning of round t,
no robot is on the door vertex as no robot moves to the door vertex during Boundary
Phase. Now, after completion of round t, at least one robot must leave the boundary and
moves inside RCon. So from round t + 1 onward, door vertex must remain outside of
RCon. This is because by lemma 4 height or width of RCon never increase to include the
door vertex inside it. Hence the result. ut

By Corollary 2 and Lemma 1 we can conclude that, after one execution of the
Gather Phase, if no robot is terminated then in the next round, Gather Phase will be
executed again. Also, from the above Lemma 4 it is evident that if the dimension of the
RCon is m1 × n1 where both m1 > 2 and n1 > 2 then, in the worst case in every 2T f + 1
round, the height or the width of the configuration decreases and none of them ever
increase. So within O(T f × (m + n)) there will be a round (say t0) when either the height
or the width of RCon becomes two. Without loss of generality let the dimension of RCon

be m1 × 2, at the beginning of round t0, where m1 > 2. Now we claim the following
lemma.

Lemma 5. If at the beginning of some round t0, the dimension of RCon is m1 × 2 (resp.
2 × n1) then, within (T f + 1)(m1 − 2) (resp. (T f + 1)(n1 − 2)) rounds if no robots are
terminated, dimension of RCon becomes 2 × 2.

Proof. Without loss of generality let the dimension of RCon be m1 × 2 at the beginning
of round t0 where m1 > 2. This implies exactly one of the height or width of RCon is
two. Without loss of generality let the width is two and height be m1 > 2. Thus RCon

consists of exactly two lines perpendicular to the width. One of these two lines (say, L)
is a boundary of G which does not contains the door vertex and the other one is the line
parallel and adjacent to it (Say L2). Now by Lemma 2 each of these two lines contains
exactly one robot. Let without loss of generality r be on the line L and r′ is on L2. Now
by Lemma 3, res must be on L. Note that, the configuration at the beginning of round
t0 is an InitGather Configuration as during round t0 the robots are executing Gather
Phase. So, the distance of r′ to the line perpendicular to L and passing through res (say
L′) is at most one. So if during round t0, res moves perpendicular to L it must move
into the location of r′ and r′ terminates. So let us consider res either move along L or
does not move at all during round t0 (Fig. 23). Now since res can not stay at the same
location alone for more than T f rounds we can assume res moves along L. Now, by a
similar argument as in Lemma 4 in the worst case within T f + 1 rounds the height of
RCon must decrease. Since m1 > 2, at the beginning of round t0, if res is at a corner, r is
not adjacent to res and hence r′ can only move parallel to L2. So unless m1 = 2, width
of RCon remains two. Now since in the worst case in each T f + 1 round the height of
RCon decreases by a unit, so in (T f + 1)(m1 − 2) rounds, the height of RCon becomes two
while the width still remains two. Hence the lemma. ut

Now we have proved that within O(T f × (m + n)) rounds there is a round t1 such
that at the beginning of it, RCon is a 2 × 2 rectangle on the bottom right corner of the
grid G (Fig. 24). At the beginning of round t1, res must be at the corner of the Grid
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Fig. 23: Height of RCon is greater than 2 so width remains the same but height decreases.

opposite to the corner of the door vertex (by Lemma 3) Here two robots r and r′ must
be on two different adjacent vertices of res (by Lemma 2). Hence by the algorithm of
Gather Phase r and r′ both move to the vertex of res during the round t1, while res has
no other edges to move out as it is on the corner. So, both robot reaches the location of
res and terminates. From this discussion, we can conclude the following Theorem.

Fig. 24: RCon has dimension 2 × 2.

Theorem 4. For a grid of dimension m×n, the Gather Phase terminates within O(T f ×

(m + n)) rounds.

Now since the termination of Gather Phase implies termination of the whole algorithm
we can conclude with the following theorem.

Theorem 5. Algorithm Gather-Dynamic terminates within O(T f × (m + n)) rounds.

5 Conclusion

Gathering is a classical problem in the field of swarm robotics. Rendezvous is a special
case of gathering where two robots gather at a single point in the environment. All the
previous works on gathering considered the meeting point to be not known by the robots
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but here we have considered the robots to know the meeting point but the meeting point
can move in the environment until a robot reaches it. To the best of our knowledge, it
is the first work that considers a dynamic meeting point. In this work, we have shown
that it is impossible for two robots to gather at a known dynamic meeting point on a
finite grid if the scheduler is semi-synchronous. Then considering a fully synchronous
scheduler we have provided a distributed algorithm Dynamic Rendezvous which gathers
the two robots on the known dynamic meeting point called the resource, within O(T f ×

(m + n)) rounds where m × n is the dimension of the grid and T f is the upper bound
of the number of rounds the resource can stay at a single vertex alone. We have also
provided a lower bound of time i.e., Ω(m + n) to solve this problem considering a m× n
grid. So, if T f ≤ k for some constant k then our algorithm is time optimal.

For future courses of research, one can think of solving this problem on other differ-
ent networks such as tree, ring, etc. In ring networks, solving this problem with limited
visibility can be really interesting. Also, One can think of finding out the minimum
number of robots needed to gather at a known dynamic meeting point for different
schedulers in different networks.
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